Production optimization under waterflooding with long short-term memory and metaheuristic algorithm

نویسندگان

چکیده

In petroleum domain, optimizing hydrocarbon production is essential because it does not only ensure the economic prospects of companies, but also fulfills increasing global demand energy. However, applying numerical reservoir simulation (NRS) to optimize can induce high computational footprint. Proxy models are suggested alleviate this challenge they computationally less demanding and able yield reasonably accurate results. paper, we demonstrated how a machine learning technique, namely Long Short-Term Memory, was applied develop proxies 3D model. Sampling techniques were employed create numerous cases which served as training database establish proxies. Upon blind validating trained proxies, coupled these with particle swarm optimization conduct optimization. Both validation results illustrated that had been excellently developed coefficient determination, R 2 0.99. We compared produced by NRS The comparison recorded good level accuracy within 3% error. 3 times faster than NRS. Hence, have their practical purposes in study.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Long Short-term Memory

Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...

متن کامل

Long Short-Term Memory

Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, ...

متن کامل

Revisit Long Short-Term Memory: An Optimization Perspective

Long Short-Term Memory (LSTM) is a deep recurrent neural network architecture with high computational complexity. Contrary to the standard practice to train LSTM online with stochastic gradient descent (SGD) methods, we propose a matrix-based batch learning method for LSTM with full Backpropagation Through Time (BPTT). We further solve the state drifting issues as well as improving the overall ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Petroleum

سال: 2023

ISSN: ['2405-6561', '2405-5816']

DOI: https://doi.org/10.1016/j.petlm.2021.12.008